# How has the community dealt with MEV?

# Systematization of Value Extraction

- Assume that extraction is inevitable as validators are rational agents
- But some validators have more capability than others
- Systematically give every validator access to the most profitable block *possible*
- Proposer Builder Separation (PBS)
- Often the profits to validators come at the expense of ordinary users, leaving ordinary users vulnerable to systematic extraction

#### Systematization of Value Extraction



### Systematization of Value Extraction

- Widespread in industry
- Validation of the rational model



# Fair Ordering

- Temporal Fair Ordering
  - (Receive Order Fairness) "If sufficiently many (at least  $\gamma$ -fraction) nodes receive a transaction tx1 before another transaction tx2, then all honest nodes must output tx1 before tx2" [KZGJ20]
- Blind Ordering
  - Ordering policy does not consider transaction contents (except transaction fees). Can be enforced through threshold encryption, Trusted Execution Environments (TEEs)
- A large body of *academic* literature
- Protection for users
- Why would a rational validator opt in, unless protocol is revamped?



Externality: Latency racing for the top of the block

# A practical question

Can users get protection against the most pernicious forms of MEV while accounting for rational validators?



# PROF: <u>Protected Order Flow</u> in a Profit-Seeking World

## PROF Mechanism

#### Simple

#### **Backward Compatible**

Protects Users without service degradation

Accounts for Rational Validators

# **PROF Design Summary**



## Validator's perspective





Which block does the validator choose?



Block *B* Reward *R*  Block  $B^*$ Reward  $R^* = R + \varepsilon$ 

#### User's perspective



Which path does the user choose?

# **Proposer Builder Separation (PBS)**



# **PROF Key Insight**



Learn practically nothing about PROF transactions if you leave-it

# Why should relays adopt PROF?

- Relays compete to have their blocks accepted
- All else equal, a PROF-enhanced relay is more competitive than a regular relay
- Workflow for builders remains unchanged

## PBS Workflow



#### **PROF Design Details**





## Latency Penalty in PBS Auction

10,000 randomly selected historical auction slots (between 1/3/24 and 4/11/24) 50 percentile 0.010 75 percentile 90 percentile 800.0 Penalty (ETH) 95 percentile mean with SEM 0.006 0.004 0.002 0.000 50 0 100 150 200 250 Latency (ms)

Percentiles of slots for a particular latency and penalty

Example: If auction were ended 85ms earlier, 90% of slots would give ~0.003 ETH less

#### Inclusion Likelihood

$$\alpha = \Pr[\operatorname{Fees}(\theta_{\operatorname{PROF}}) > \\ \max(\operatorname{Bids}(T_0)) - \max(\operatorname{Bids}(T_0 - \delta))].$$

$$\operatorname{Latency} \operatorname{Penalty}(\delta)$$

**Inclusion Likelihood** 

$$\alpha = \Pr[g\gamma f > \text{Latency Penalty}(\delta)].$$
Relationship between  $\alpha, g, \gamma$ 
Gas used in PROF bundle Overhead as a multiple of ``base fee'' f

#### Inclusion Likelihood



#### A Step Further: Redistribution of MEV to Users



#### A Step Further: Redistribution of MEV to Users



#### A Step Further: Redistribution of MEV to Users



Share \$X with Alice, \$20-X divided up between validator and arbitrageur

## PROF-Share : A Step Further

- Redistribute any MEV opportunity created by PROF users back to them
- For instance, arbitrage from backrunning of DEX trades



## **Related Redistribution Mechanisms**

- MEV-Share and MEV-Blocker
- Attempts to prevent frontrunning through a trusted intermediary
- Yet, needs to leak hints about transaction contents for attracting and facilitating backrunning and redistribution
- Widespread in industry : Revenue to the validator from MEV-Share and MEV-Blocker is pivotal in deciding the winner of a majority of auctions!

# Other benefits of PROF-Share

- PROF-Share transactions are completely private until the validator commits to including them, and then are completely released for backrunning
- As a result:
- More efficient backrunning compared to backrunning based on hints (gas savings as state is known offchain)
- PROF-Share users get to keep *almost all* of the backrunning profits rather than sharing it with validators (as in MEV-Share)
- Organic backrunning between transactions of a PROF bundle one PROF user could be a "backrunner" of another user if they trade in opposite directions

# **Economic Utility Analysis**

- Compare different protection mechanisms
- PROF v/s PROF-Share v/s MEV-Share
- Model:
  - DEX : A constant product AMM
  - An external infinite liquidity market for arbitragers (Centralized Exchanges)

     constant price P
  - Start out with AMM price of P
  - Each user trades a unit quantity in randomly either direction
  - Demand Ratio (informally) : A maximum cap on how much volume of trades are in one direction compared to a baseline of net 0 buy and 0 sell

#### **Economic Utility Analysis**



- Takeaway1 : PROF-Share always delivers the highest value of users
- Takeaway2: In times of low net demand, PROF delivers higher value even without redistribution benefits (MEV-Share), thanks to organic backrunning

# Flexibility in PROF

- Multiple Sequencers
- PROF Sequencer here is a black-box
  - Centralized / Decentralized
  - PROF supports any ordering policy



# Conclusion

- PROF: A simple backward-compatible system designed for protecting users from harmful MEV extraction, while accounting for the profitmaximizing nature of validators
- PROF Endgame Thesis: Transactions that want top of the priority can go through the gauntlet of MEV auctions\*. All other transactions should go through PROF to enjoy protection from MEV

\*nullifies the externality of latency racing in fair and blind ordering

31

# To Learn More



- Visit the website: prof-project.github.io (FAQs)
  - Watch the demo of PROF-enriched blocks landing at validators
- Uniswap RFP: \$50k for maturing PROF implementation
- Announcements @PROF\_MEV ×
- Contact: babel@cs.cornell.edu
- PROF paper just released!

**PROF:** <u>Protected</u> <u>Order</u> <u>Flow in a Profit-Seeking World</u>

Kushal Babel<sup>†§</sup>, Nerla Jean-Louis<sup>‡§</sup>, Yan Ji<sup>†§</sup>, Ujval Misra<sup>||§</sup>, Mahimna Kelkar<sup>†§</sup>, Kosala Yapa Mudiyanselage<sup>¶</sup>, Andrew Miller<sup>‡§</sup>, Ari Juels<sup>†§</sup>

<sup>†</sup>Cornell Tech, <sup>‡</sup>UIUC, <sup>||</sup>UC Berkeley, <sup>§</sup>IC3, <sup>¶</sup>Fidelity Center for Applied Technology